Module	Process Chemistry and Development	
Code	MLS_S01	
Degree Program	Master of Science in Life Sciences (MSLS)	
Cluster	Chemistry	
Specialization	Chemical Development and Production	
ECTS Credits	4	
Workload	120 student working hours: 58 lessons contact = 43.5 h; 76.5 h self-study	
Module Coordinator	Name	Dr. Roger Marti
	Phone	+41 (0)26 429 67 03
	Email	roger.marti@hefr.ch
	Address	Haute école d'ingénierie et d'architecture de Fribourg, Bd de Pérolles 80, CH-1700 Fribourg
Lecturers	Dr. Chri	stophe Allemann, HEIA-FR
		npia Mamula Steiner, HEIA-FR
	Guest le	ecturers
Entry Requirements	Bachelor of Science in Chemistry or in a related course of study including organic courses (Bachelor level)	
Learning Outcomes and Competences	After completing the module students will be able within the concept of Process Chemistry to:	
	underst chemist	and and apply advanced organic chemistry and the concepts of green
	• realize	a route finding and route selection
	• realize	asymmetric syntheses and biocatalysis
	I -	d realize the enabling of synthesis on lab scale and perform a lab ation (solvent/reagent selection, catalysis)
		and and apply novel synthesis technologies like micro reactor and ase synthesis
Module Content	Process Chemistry: Synthesis Development	
		dge of the concepts of basic process research and implication on sResearch and Development (PRD) & production
	 Reactio 	n Metrics (E-Factor, etc.) and Green Chemistry
	Route fi	nding & selections - concepts, applications & case studies
		dge of the concepts of route enabling and synthesis optimization: choice of solvent, reagent, catalysts, etc.
	Knowle	dge of applications & the use of catalysis in PRD

05.06.2020 - 1/2-

	Process Chemistry: Chemical Development		
	Route Enabling & Lab Optimization		
	Planning and execution of laboratory work		
	Kinetics & Mechanism evaluation in PRD		
	 Optimization by understanding impurities and structure elucidation (2D-NMR) 		
	 New synthesis technologies like solid phase chemistry, flow chemistry, micro wave etc. 		
	Advanced Asymmetric Synthesis & Catalysis		
	Knowledge of the concepts of asymmetric synthesis & applications		
	Applications of enzymes in organic synthesis		
Teaching / Learning	Lectures		
Methods	Individual and group exercises		
	Active participation in the module is requested		
Assessment of	Written exam (closed book): 50% of the final grade		
Learning Outcome	Final examination (oral): 50% of the final grade		
	Reassessment: oral exam		
Bibliography	N. G. Anderson, "Practical Process Research & Development", Academic Press 2000.		
	 O. Repic, "Principles of Process Research and Chemical Development in the Pharmaceutical Industry, Wiley 1998. 		
	N. Yasuda, "The Art of Process Chemistry", Wiley 2010		
	 R.A. Sheldon, I. Arends, U. Hanefeld, "Green Chemistry & Catalysis", Wiley 2007. 		
	Documentation: http://cyberlearn.hes-so.ch (requires a login)		
Language	English		
Comments	-		
Last Update	05.06.2018 / Roger Marti		
	09.04.2019 / Roger Marti		
	05.06.2020 / Roger Marti		
1			

05.06.2020 - 2 / 2 -